skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taylor, Douglas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In many species with sex chromosomes, the Y is a tiny chromosome. However, the dioecious plantSilene latifoliahas a giant ~550-megabase Y chromosome, which has remained unsequenced so far. We used a long- and short-read hybrid approach to obtain a high-quality male genome. Comparative analysis of the sex chromosomes with their homologs in outgroups showed that the Y is highly rearranged and degenerated. Recombination suppression between X and Y extended in several steps and triggered a massive accumulation of repeats on the Y as well as in the nonrecombining pericentromeric region of the X, leading to giant sex chromosomes. Using sex phenotype mutants, we identified candidate sex-determining genes on the Y in locations consistent with their favoring recombination suppression events 11 and 5 million years ago. 
    more » « less
    Free, publicly-accessible full text available February 7, 2026
  2. The motion of cladding systems can be leveraged to mitigate natural and man-made hazards. The literature counts various examples of connections enhanced with passive energy dissipation capabilities at connections. However, because such devices are passive, their mitigation performance is typically limited to specific excitations. The authors have recently proposed a novel variable friction cladding connection capable of mitigating hazards semi-actively. The variable friction cladding connection is engineered to transfer lateral forces from the cladding element to the structural system. Its variation in friction force is generated by a toggle-actuated variable normal force applied onto sliding friction plates. In this study, a multiobjective motion-based design methodology integrating results from the previous work is proposed to leverage the variable friction cladding connection for nonsimultaneous wind, seismic, and blast hazard mitigation. The procedure starts with the quantification of each hazard and performance objectives. It is followed by the selection of dynamic parameters enabling prescribed performance under wind and seismic loads, after which an impact rubber bumper is designed to satisfy motion requirements under blast. Last, the peak building responses are computed and iterations conducted on the design parameters on the satisfaction of the motion objectives. The motion-based design procedure is verified through numerical simulations on two example buildings subjected to the three nonsimultaneous hazards. The performance of the variable friction cladding connection is also assessed and compared against different control cases. Results show that the motion-based design procedure yields a conservative design approach in meeting all of the motion requirements and that the variable friction cladding connection performs significantly well at mitigating vibrations. 
    more » « less
  3. Purugganan, Michael (Ed.)
    Abstract In most eukaryotes, transfer RNAs (tRNAs) are one of the very few classes of genes remaining in the mitochondrial genome, but some mitochondria have lost these vestiges of their prokaryotic ancestry. Sequencing of mitogenomes from the flowering plant genus Silene previously revealed a large range in tRNA gene content, suggesting rapid and ongoing gene loss/replacement. Here, we use this system to test longstanding hypotheses about how mitochondrial tRNA genes are replaced by importing nuclear-encoded tRNAs. We traced the evolutionary history of these gene loss events by sequencing mitochondrial genomes from key outgroups (Agrostemma githago and Silene [=Lychnis] chalcedonica). We then performed the first global sequencing of purified plant mitochondrial tRNA populations to characterize the expression of mitochondrial-encoded tRNAs and the identity of imported nuclear-encoded tRNAs. We also confirmed the utility of high-throughput sequencing methods for the detection of tRNA import by sequencing mitochondrial tRNA populations in a species (Solanum tuberosum) with known tRNA trafficking patterns. Mitochondrial tRNA sequencing in Silene revealed substantial shifts in the abundance of some nuclear-encoded tRNAs in conjunction with their recent history of mt-tRNA gene loss and surprising cases where tRNAs with anticodons still encoded in the mitochondrial genome also appeared to be imported. These data suggest that nuclear-encoded counterparts are likely replacing mitochondrial tRNAs even in systems with recent mitochondrial tRNA gene loss, and the redundant import of a nuclear-encoded tRNA may provide a mechanism for functional replacement between translation systems separated by billions of years of evolutionary divergence. 
    more » « less